Structure of the Inhibitor W7 Bound to the Regulatory Domain of Cardiac Troponin C†
نویسندگان
چکیده
The calmodulin antagonist W7 binds to troponin C in the presence of Ca(2+) and inhibits striated muscle contraction. This study integrates multiple data into the structure of the regulatory domain of human cardiac troponin C (cNTnC) bound to Ca(2+) and W7. The protein-W7 interface is defined through a three-dimensional {(1)H,(13)C}-edited-{(1)H,(12)C}-detected NOESY NMR experiment, and other aspects of the structure are modeled as perturbations to previously known coordinates and restraints. The structure determination protocol optimizes the protein-W7 contacts prior to the introduction of protein-W7 steric interactions or conformational changes in the protein. The structure determination protocol gives families of conformers that all have an optimal docking as assessed by satisfaction of the target function. The structure supports the previously proposed troponin I blocking mechanism for the activity of W7 in striated muscle and suggests a role for the flexible tail of W7 in stabilization of the bound state. This clarifies the structure-activity relationships of W7 and implicates an electrostatically mediated component of activity in common analogues of W7, including the antipsychotic trifluoroperazine and the cardiotonic levosimendan.
منابع مشابه
Effects of troponin I phosphorylation on conformational exchange in the regulatory domain of cardiac troponin C.
Conformational exchange has been demonstrated within the regulatory domain of calcium-saturated cardiac troponin C when bound to the NH2-terminal domain of cardiac troponin I-(1-80), and cardiac troponin I-(1-80)DD, having serine residues 23 and 24 mutated to aspartate to mimic the phosphorylated form of the protein. Binding of cardiac troponin I-(1-80) decreases conformational exchange for res...
متن کاملStructure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain.
The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardi...
متن کاملConformation of the regulatory domain of cardiac muscle troponin C in its complex with cardiac troponin I.
Calcium activation of fast striated muscle results from an opening of the regulatory N-terminal domain of fast skeletal troponin C (fsTnC), and a substantial exposure of a hydrophobic patch, essential for Ca(2+)-dependent interaction with fast skeletal troponin I (fsTnI). This interaction is obligatory to relieve the inhibition of strong, force-generating actin-myosin interactions. We have dete...
متن کاملEffect of temperature on the structure of trout troponin C.
Adaptation for life at different temperatures can cause changes in many aspects of an organism. One example is the expression of different protein isoforms in species adapted to different temperatures. The calcium regulatory protein cardiac troponin C (cTnC), from rainbow trout (Oncorhynchus mykiss), is a good model for studying temperature effects, both because of its low physiological tempera...
متن کاملCrystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation.
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding...
متن کامل